
Slide 1 – Title Slide
Hello and welcome to Week 8, Part 4 of EGM101: ANOVA. In this lesson, we’ll learn about a way that 
we can do hypothesis testing with more than two samples.

Slide 2 – What happens if we have >2 samples?
So far, we’ve seen how we can use hypothesis tests to answer questions about whether our samples 
come from a population with different mean values. If we only have one sample, we can use the one-
sample t-test to compare the sample mean to the hypothesized population mean. If we have two 
samples, we’ve seen different forms of the two sample t-test, depending on whether our samples are 
paired or independent.

What if we have 3 or more samples, though? We could conduct pairwise two-sample tests, but this 
raises a different problem – multiple tests increases the likelihood that we make a Type-I error. Instead 
of conducting multiple two-sample tests, we can instead use a technique called analysis of variance, 
frequently shortened to ANOVA.

Slide 3 – The F-distribution
ANOVA relies on something called the F-distribution, which is a ratio of two “chi-square” distributions 
– we’ll talk more about the chi-square distribution later this week. 

Like Student’s t-distribution, the F-distribution depends on degrees of freedom – unlike the t-
distribution, we actually have two separate degrees of freedom. The first, df1 or nu 1, is equal to k 
minus 1, where k is the number of groups that we have. The second, df2, is equal to n minus k, where n 
is the sum of the individual sample sizes.

The graph here shows the variation of the F-distribution for different combinations of degrees of 
freedom. At low values of both df1 and df2, the distribution looks something like an exponential 
distribution; as we increase the degrees of freedom, you can see how the distribution changes from a 
skewed distribution to become more symmetrical as the “peak” of the distribution gets taller and 
narrower. 

Slide 4 – One-way ANOVA: Assumptions
Before we can use ANOVA, we have a number of assumptions that need to be met. The first is that the 
dependent variable is continuous – we can’t use ANOVA if we have discrete variables. 

Next, the independent variable must be categorical – that is, we’re separating the data into different 
distributions based on some category. This could be based on ranges of a particular value, or it could be 
based on the month or season that the measurements were recorded, or it could be based on the body of 
water that we sampled from.



We also assume that the populations are normally-distributed – meaning that ANOVA is a parametric 
test. Finally, we also assume that the samples that we are using are independent, random samples, and 
that the different populations have equal variances. In practice, this means that the ratio of the different 
sample variances is between 0.5 and 2, like we saw previously with the unpaired samples t-test.

As long as these different assumptions are met, we can use ANOVA – if not, we need to look into 
alternative tests.

Slide 5 – Mean squares
Before we get to the actual test, we need to introduce a few more things, starting with something called 
the treatment mean square. To calculate the treatment mean square, we first calculate the treatment sum 
of squares, SS treatment – this is the sum of the squares of the difference between each sample mean, 
xbar i, and  and the overall mean of the data, multiplied by the sample size of each group. We then 
divide the treatment sum of squares by k – 1, where k is the number of groups. 

The treatment mean square depends on the differences between the groups – essentially, it’s the sample 
variance of the different sample means, with k – 1 degrees of freedom.

The other term we need to introduce is the error mean square, calculated using the formula shown here. 
To calculate the error mean square, we first calculate the error sum of squares, SS error – this is the 
sum of the sample variance of each group, multiplied by the size of each group minus 1. We then divide 
the error sum of squares by n – k, where n is the sum of the sample sizes of each group.

The error mean square depends on the differences within the groups – essentially, it’s the pooled 
estimate of the population variance, with n – k degrees of freedom.

Slide 6 – The One-way ANOVA Identity
In addition to the treatment sum of squares and the error sum of squares, we can also calculate the total 
sum of squares for the samples, SS total, using the formula shown here. In effect, this tells us the total 
variation among all of our sample data – it’s very similar to the calculation for the variance, with the 
exception that we’re not taking the average by dividing by the number of degrees of freedom.

The total sum of squares is also equal to the sum of the treatment and error sums of squares, a fact that 
is known as the One-way ANOVA identity. Effectively, this shows us that we can partition the total sum 
of squares into the treatment and error sums of squares – but more importantly, it means that we don’t 
have to calculate all three of these things separately – we only have to calculate two of them, and we 
can use this identity to calculate the other one.

Slide 7 – The F-statistic
With that, we arrive at the F-statistic, which is what we use for the ANOVA test. The F-statistic, 
calculated as the ratio of the treatment mean square to the error mean square, compares the variation 
between the sample means to the variation within the individual samples. 



Larger values of the F-statistic mean that we have more variation between the groups than we have 
within the groups – in other words, it’s more likely that the samples have different population means. 
As we discussed on the previous slide, we have two degrees of freedom for the F-statistic – the 
treatment mean square in the numerator, has k – 1 degrees of freedom, while the error mean square, in 
the denominator, has n – k degrees of freedom, where n is the sum of all the individual sample sizes.

Before moving on, you should note that the F-statistic is not so different from the coefficient of 
determination. Remember that the coefficient of determination is calculated as the ratio of the 
explained variability to the total variability, whereas the F-statistic can be thought of as the ratio of the 
explained variance to the unexplained variance.

Slide 8 – One-way ANOVA
We will wrap up by looking at the one-way ANOVA test. In the one-way ANOVA test, the null 
hypothesis is that that group means are all equal – that is, there is no difference in the group means.

The alternative hypothesis is that the population means are not equal for some pair of groups. On the 
boplot here, we can see what these two scenarios look like. If the null hypothesis is correct, shown in 
the top panel, then the differences in the sample means for each group are due to random variability in 
the samples, and not because of an actual difference between the populations that each sample is drawn 
from. The differences between the mean values are very small in comparison to the dispersion in the 
samples, represented by the size of the boxes.

If the null hypothesis is not correct, though, then the differences between the groups are larger than the 
dispersion of the samples – that is, the differences between the samples is unlikely to be due to random 
variation in the samples.

ANOVA will only be able to tell us if there is a difference between at least one pair of groups, though – 
if we want to determine which groups are different, or how they are different, then we need to do 
additional tests, called “post hoc” tests because we do them “after the fact”, to figure out where the 
differences are.

The actual test procedure is very similar to what we saw for our other hypothesis tests. First, we have to 
calculate the F-statistic for our observations, then we compare that value of the F-statistic to the critical 
value (or p-value) for the F-distribution with the degrees of freedom equal to df1 and df2. 

Finally, the one-way ANOVA test is always a right-tailed test – that is, we’re only testing whether the 
observed F-statistic is larger than the critical F-statistic. 

Slide 9 – Summary
In this lesson, we’ve seen how ANOVA helps us determine if there is a difference in means between 
multiple samples or groups.

We do this by comparing the variance between the groups to the variance within the groups – if the 
variance between the groups is greater than the variance within the groups, the chances are that at least 
one of the groups comes from a population with a different population mean.



Finally, we discussed how ANOVA will only tell us if there is a difference between the groups – it 
won’t tell us which group is different, nor will it tell us what the difference is. For that, we need to do 
additional testing.

Slide 10 – Additional resources
You can read more about the topics we’ve discussed here in the textbooks – Illowsky and Dean, 
Chapter 13; and Weiss, Chapter 13.

I’ve included links to two additional articles here on how F-tests work in ANOVA, and about using post 
hoc tests with ANOVA. I’ve also added links to two videos from Khan Academy, about calculating the 
total sum of squares, and calculating the SSerror and SStreatment.

That’s all for this lesson – I hope you found it interesting, and if you have any questions, please don’t 
hesitate to e-mail me or post in the discussion forum on blackboard. Bye!


	Slide 1 – Title Slide
	Slide 2 – What happens if we have >2 samples?
	Slide 3 – The F-distribution
	Slide 4 – One-way ANOVA: Assumptions
	Slide 5 – Mean squares
	Slide 6 – The One-way ANOVA Identity
	Slide 7 – The F-statistic
	Slide 8 – One-way ANOVA
	Slide 9 – Summary
	Slide 10 – Additional resources

