
Slide 1 – Title Slide
Hello and welcome to Week 8, Part 5 of EGM101: Non-parametric tests. In this lesson, we’ll see how 
even if our data don’t fit the assumptions required of parametric tests, we can still do some hypothesis 
testing.

Slide 2 – When do I use non-parametric tests?
When we introduced parametric tests earlier this week, we made the following assumptions about the 
data we were using: first, that the data are approximately normally-distributed, or that the sample size 
was large enough that we could get by with the central limit theorem, and second, that we have 
continuous data.

This isn’t always going to be the case, though. For starters, we might have ordinal data, our data might 
be heavily skewed or otherwise non-normal, and we might have to deal with small sample sizes. If any 
of these things are true, we won’t be able to use parametric tests reliably (or at all).

So, when our data don’t fit the assumptions of the parametric tests, we use non-parametric tests. One of 
the big reasons for using non-parametric tests is because we can still get reliable results using non-
normal data; but also, we will see some types of tests that allow us to use ordinal data.

One other thing to note is that with non-parametric tests, we normally use the median, denoted using 
the lowercase Greek letter eta, rather than the mean, to calculate the test statistic.

Slide 3 – Wilcoxon signed-rank tests
The first example of a non-parametric test that we will look at are actually a pair of tests, called 
Wilcoxon signed-rank tests. We use the Wilcoxon signed-rank tests when we have data that are 
continuous and symmetric, though not necessarily normally-distributed.

We’ll introduce this further on the next slide, but the test statistic we use for the Wilcoxon signed-rank 
is the sum of the positive difference ranks, W+. Alternative formulations use the sum of the negative 
difference ranks, W-, or the minimum of the two values.

If we have a large enough sample size – if n times n +1, divided by 2 is greater than 20, the W-statistics 
are approximately normally distributed, with a mean and a variance given by the formulas on the slide 
here. We can then calculate the z-score and use the standard normal distribution to calculate the critical 
value for the test. If the sample size is small, though, we can’t use the normal approximation; in that 
case, we would need to use a lookup table to find the critical value of our test statistic.

The formulas for the mean and variance shown here assume that there are no ties in the data – if we do 
have ties, the variance is slightly more complicated. If that’s the case, for each group of tied 
observations of size t, we subtract t cubed minus t divided by 48 from the variance, to account for the 
reduction in variance caused by tied values.



Slide 4 – Signed ranks
Now that we’ve introduced the test procedure, we need to discuss the test statistics W+ and W- in more 
detail. Similar to Spearman’s rank correlation, the Wilcoxon tests use ranks, rather than the actual 
values of the data. Specifically, we use the ranks of differences – for the one sample Wilcoxon, we use 
the differences between the data and the mean or median that we’re testing against; for the two-sample 
test, we use the difference between matched pairs of the data.

Starting with the values of two variables, and y, we take the differences between each pair of values. 
Then, we rank the absolute values of the differences, starting from the smallest value to the largest 
value. So, the smallest absolute difference gets a rank of 1, and we work our way up from there. 

And, in this example, you can see that we have a number of tied differences – if we do have ties, then 
we assign the average rank for each group of tied values. Here, we have two ones, so we assign an 
average rank of 1.5 to these; we also have three sixes, which get an average rank of 6; and two sevens, 
which get an average rank of 8.5.

Finally, we use the sign of the difference to sum the ranks of the positive differences, though for this 
example, the W+ and W- statistics have the same value: 27.5. From here, because we have such a small 
sample size, we would use a lookup table to find the critical value for our chosen alpha and sample 
size.

The final question is, what do we do if we have differences of zero? The Wilcoxon test is not really 
made to handle these cases, so the classical answer is to just ignore them. But, this is not the only 
option – we could also include them when assigning ranks, and exclude them from calculating the test 
statistic.

Slide 5 – One-sample Wilcoxon
Now, we’ll look at a one-sample Wilcoxon example, to see how this works in practice. Let’s say that in 
a study of salmon in a particular river, we went out and caught only 7 fish. We still want to be able to 
answer the question, is the population median equal to 150 cm? Because of the small sample size, we 
can’t reliably use the student’s t-test or another parametric test – instead, we have to use a non-
parametric test.

The hypotheses for the test are then as follows: the null hypothesis is that the population median is 
equal to the hypothesized value of 150 cm; the alternative hypothesis is that the value is less than 150 
cm. 

To proceed with the test, we first subtract the hypothesized median value of 150 cm from each value of 
our dataset. Then, we take the absolute values of those differences, and rank the values. After that, we 
calculate the test statistic as the sum of the positive values – for this dataset, we have a value of 13.

Now, our sample size is small, which means that we can’t just use the normal approximation that we 
introduced earlier. Instead, we have to use a lookup table of the exact values of the distribution, based 
on the values of n and alpha. For n = 7 and alpha = 0.05, the critical value is equal to 4. Because the 
value of our test statistic, 13, is greater than this critical value, 4, we fail to reject the null hypothesis – 



our observations do not provide sufficient evidence to conclude that the population median is less than 
150 cm.

Slide 6 – Two-sample Wilcoxon
The two-sample Wilcoxon signed-rank test is the non-parametric counterpart to the paired sample t-
test. I won’t go through an example here, but I will outline the basic steps of the test.

First, we take the differences of the paired samples, as we saw earlier when I introduced signed ranks. 
Then, we rank the absolute values of those differences, and calculate the test statistic by summing the 
ranks of the positive differences.

Finally, if our sample size was big enough we could use the normal approximation, or we would need 
to use a lookup table to find the critical value of the test statistic, based on the sample size and chosen 
significance level.

Slide 7 – Mann-Whitney U-Test
The final non-parametric test that we’ll learn about in this lesson is the Mann-Whitney U-test, which is 
a non-parametric counterpart to the independent samples t-test. The question that we’re attempting to 
answer with the Mann-Whitney U-test is: is there a difference in the rank sum between two groups? 

To use the Mann-Whitney test, we have a few requirements: first, we require random, independent 
samples – just like with the independent samples t-test. We also need at least one sample to have a 
sample size larger than 5. And finally, we need the dependent variable to be either ordinal or numeric, 
since we have to rank the values. This means, though, that we do not have to have numeric data for the 
Mann-Whitney U-test – it can also be used for ordinal data.

The test proceeds like the others that we have seen – first, we calculate the test statistic, U; then, we 
either look up the critical value in a lookup table, or, if we have a large enough sample size, we can use 
a normal approximation for the U statistic.

Slide 8 – Mann-Whitney U-Test
Let’s say that we have two small samples of some data, each drawn from a different population: some 
red data, drawn from population 1; and some blue data, drawn from population 2. We are interested in 
determining if the two populations have different median values.

Our hypotheses for the Mann-Whitney U-test are then: the null hypothesis is that the two population 
medians are equal to each other; the alternative hypothesis is that the two population medians are not 
equal to each other.

The test proceeds as follows: first, we have to rank all of the values, from smallest to largest. The table 
here shows the ranks for each value, with the color of each cell corresponding to whether the value is 
part of the red sample or the blue sample.



For each variable, we then sum the ranks. For the red variable, the sum of the ranks is equal to 44; for 
the blue variable, it is 22. 

Next, we have to calculate the two test statistics, U1 and U2. U1 is calculated according to the formula 
shown here – n1 and n2 are the sample sizes of the two variables, and R2 is the sum of the ranks of the 
blue variable. Plugging in our values, we get a value of 23 for U1. U2 is calculated using a similar 
formula – again, plugging in our values, we get a value of 7 for U2.

If the total sample size, n, is greater than 20, the U-statistic is approximately normally-distributed, with  
an expected value and standard error given by the formulas shown here. We can then calculate the z-
score using the minimum of U1 and U2 – plugging in the different values for n1 and n2 here, we 
calculate a z-score of -1.461. 

Finally, from the standard normal distribution, the p-value corresponding to a z-score of -1.461 is equal 
to 0.144 – because this is greater than our significance level of 0.05, we do not reject the null 
hypothesis – our observations do not provide sufficient evidence to conclude that the two populations 
have a different median value.

Slide 9 – Summary
In this lesson, we’ve seen how non-parametric tests are tests where we don’t make any assumptions 
about the distribution of the population. Because of this, we can use non-parametric tests with a wider 
range of data, including data that are non-normally distributed, and even non-numeric data in some 
cases.

We also saw some non-parametric counterparts to parametric tests, such as the one-sample Wilcoxon 
signed rank test as a counter part to the one-sample t-test; the two-sample Wilcoxon signed rank test as 
a counterpart to the paired sample t-test; and the Mann-Whitney U-test as a counterpart to the 
independent samples t-test.

As before, focus more on the question of “why” you would use a particular non-parametric test, rather 
than the formulas. Most of the time, you will end up using some software package such as SPSS to 
actually perform the test. Instead, you should try to understand when to apply which test, based on the 
data that you are using.

Slide 10 – Additional resources
You can read more about the topics we’ve discussed here in the textbooks – Weiss, Chapters 9.6, 10.4, 
and 10.6. I’ve also included links to an article about parametric and non-parametric tests, and when to 
use them, as well as links to two YouTube videos that cover the same topic.

That’s all for this lesson – I hope you found it interesting, and if you have any questions, please don’t 
hesitate to e-mail me or post in the discussion forum on blackboard. Bye!
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