
EGM722: W1, P1: Why programming? 1

EGM722 – Programming for GIS and
Remote Sensing

Week 1, Part 1: Why programming?

EGM722: W1, P1: Why programming? 2

Week 1 Outline

1.A brief introduction to programming using python

2.Built-in types

3.Controlling Flow

4.Functions

5.A brief introduction to git

EGM722: W1, P1: Why programming? 3

Why programming?

● In GIS and Remote Sensing, we often repeat the same tasks over and over
– e.g., processing new/different data for different areas

● These tasks often form a workflow
– What happens when you need to re-do a single step in the middle or beginning of the

workflow?

– What happens when someone else needs to do the same steps that you did?

– What happens if we’re lazy and don’t want to do the same tasks over and over?

● Computers: really good at repeating the same tasks over and over and over
and over and over and over and over and over and…
– But (for now), we have to give them instructions: programming

EGM722: W1, P1: Why programming? 4

What is python?

● An interpreted, high-level
language

● Python interpreter:
– Reads code

– Translates it

– Executes it

● Run in two ways:
– Interactive mode

– Script mode

EGM722: W1, P1: Why programming? 5

The world is filled with objects

● Python is an object-oriented
programming language

● Object: the basic “thing” that
python works with

● Objects have:
– type

– properties

– methods

EGM722: W1, P1: Why programming? 6

Variables

● A variable is a name that refers to an
object

● “Like a box in the computer’s memory
where you can store a single value”
(Swiegart, 2020)

● If we want to save values to use later,
have to store them in a variable

● To create variables, use assignment
statements
– NB: ‘=’ does not mean ‘equal to’!

EGM722: W1, P1: Why programming? 7

Naming variables

● Good practice:
– Choose meaningful names

– Names must begin with a letter

– Can contain underscores

● Bad practice:
– Names cannot contain illegal characters (@, !, etc.)

– Cannot be a protected keyword (and, for, if, etc.)

– Try not to overwrite built-in types/classes (list, int, etc.)

EGM722: W1, P1: Why programming? 8

Operators

● We use operators to perform some kind of computation
● Examples:

– +: addition (concatenation for strings and lists)

– -: subtraction

– *: multiplication (also works for strings, lists)

– /: division
● In python 3, normal division (e.g., 4/5 = 0.8)
● In python 2, floor division (e.g., 4/5 = 0)
● python 2 is (mostly) gone now, unless you use ArcMap

– **: exponentiation (NB: ^ is a separate operator)

– %: modular arithmetic

EGM722: W1, P1: Why programming? 9

Order of operations

● Python follows PEMDAS:
– Parentheses

– Exponentiation

– Multiplication/Division

– Addition/Subtraction

● Operators with same
precedence are evaluated
left to right

● 2*(3 – 1)
● (1+1)**(5-2)
● 2**1+1
● 3*1**3
● 2*3-1
● 6+4/2

EGM722: W1, P1: Why programming? 10

Expressions and Statements

● An expression is a combination of objects, variables, and
operators:
– 42

– x

– x+42

● A statement is a unit of code the interpreter can execute
– Assignment statements (e.g., x = 42)

– return, pass statements

EGM722: W1, P1: Why programming? 11

Summary

● Programming is giving a computer instructions to
execute tasks

● Python: one language we can use to give a computer
instructions

● Python uses objects to carry out computations and
other tasks

EGM722: W1, P1: Why programming? 12

Additional resources

● Automate the Boring Stuff with Python (2nd ed.)
● Automate the Boring Stuff with Python [youtube]
● Learnpython.org
● Beginner’s Guide to Python [python.org]
● Python documentation (3.8.8) [python.org]

https://automatetheboringstuff.com/2e/
https://www.youtube.com/watch?v=1F_OgqRuSdI&list=PL0-84-yl1fUnRuXGFe_F7qSH1LEnn9LkW
https://www.learnpython.org/
https://wiki.python.org/moin/BeginnersGuide
https://docs.python.org/3.8/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

